On cellular codes and their cryptographic applications

Pierre Loidreau

DGA MI and IRMAR, Université de Rennes 1
ACCT-2014, September 9th, 2014

Motivations

- Quasi-cyclic codes are everywhere
- Cryptography: Reduce public-key Size
- Codes: MDPC, QC-McEliece, LRPC - Lattices: Ring-LWE, NTRU
- Coding theory: Reduce complexity, good properties
- QC-LDPC constructions in standards
- \Rightarrow Goal:
(1) Use the algebraic structure to improve efficiency
(2) Give a framework to study the security

Position of the problem

- Doubly circulant code $[2 n, n]$ over \mathbb{F}_{q}

$$
\mathcal{C}=<\left(\mathbf{I}_{n} \mid \mathbf{A}\right)>, \mathbf{A} \text { circulant }
$$

- Related cryptographic problems
- Decoding in \mathcal{C}, Hamming (rank) t errors
- Finding low-weight (rank) codewords in \mathcal{C}

Actual gain in efficiency

- Without structure
- Hamming, ISD: $2 n^{3}\binom{2 n}{n} /\binom{2 n-t}{n}$
- Rank: Let $q=p^{v}$

$C_{1}=t^{3} n^{3} p^{\left\lceil\frac{(t \boldsymbol{n}+\mathbf{1})-\boldsymbol{n})}{\boldsymbol{t}}\right\rceil}$	$C_{2}=n^{3} v^{3} \min \left(p^{t\left\lfloor\frac{\mathbf{v}}{2}\right\rfloor}, p^{(t-1)\left\lfloor\frac{(n+\mathbf{1}) \mathbf{v}}{n}\right\rfloor}\right)$
$C_{3}=(n+t)^{3} t^{3} p^{(n+1)(t-1)}$	$C_{4}=(n+t)^{3} p^{(t-1)(v-t)+2}$

- Using the structure
- Hamming: Gain of \sqrt{n} in decoding and n in finding low-weight codewords
- Rank: ?

Outline of the talk

- Cellular codes
- Projected cellular codes
- Hamming metric case
- Rank metric case

Cellular codes

Definition - (I)

- $g(x)=\sum_{i=0}^{m-1} g_{i} x^{i} \in K[x]$ of degree m, and $\mathcal{R}_{g}=K[x] /(g)$
- $\psi_{\boldsymbol{g}}: a(x) \in \mathcal{R}_{\boldsymbol{g}} \longmapsto \mathbf{a}=\left(a_{0}, \ldots, a_{m-1}\right) \in K^{m}$
- Morphism of commutative algebras

$$
\Phi_{g}: a(x) \in \mathcal{R}_{g} \mapsto \underbrace{\mathbf{A}}_{a \text { cell }}=\left(\begin{array}{c}
\psi_{g}(a(x)) \\
\psi_{g}(x a(x)) \\
\vdots \\
\psi_{g}\left(x^{m-1} a(x)\right)
\end{array}\right) \in K^{m \times m}
$$

Definition - (II)

Definition

Let

$$
\mathbf{G}_{\mathcal{M}}=\left(\begin{array}{ccc}
a_{1,1}(x) & \cdots & a_{1, \ell}(x) \\
\vdots & \ddots & \vdots \\
a_{s, 1}(x) & \cdots & a_{s, \ell}(x)
\end{array}\right) \rightarrow \mathbf{G}=\left(\begin{array}{ccc}
\mathbf{A}_{1,1} & \cdots & \mathbf{A}_{1, \ell} \\
\vdots & \ddots & \vdots \\
\mathbf{A}_{s, 1} & \cdots & \mathbf{A}_{s, \ell}
\end{array}\right)
$$

Then $\mathcal{C}_{g}=<\mathbf{G}>_{K}$ is a g-cellular code of index ℓ

Figure: Different ways of considering a doubly circulant code as a cellular code

Some properties and lack of properties

- \mathcal{C}_{g} is an $[n=\ell m, k \leq m s]_{K}$ code
- $\mathbf{A}_{i, j}$ in the commutative subalgebra of $\mathcal{M}_{m \times m}(K)$ generated by

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots & \\
g_{0} & g_{1} & g_{2} & \cdots & g_{m-1}
\end{array}\right)
$$

- Generalisation of quasi-cyclic codes
- Generally trivial automorphism group
- No particular structure of the dual code

Projected cellular codes

Projection operation

- Let $f(x) \in L[x], L \hookleftarrow K$ of degree δ such that $f(x) \mid g(x)$.
$\Pi: \quad \mathcal{R}_{g} \quad \longrightarrow \quad \mathcal{R}_{f}=L[x] / f \cdot L[x]$, $a(x) \bmod g(x) \quad \mapsto \quad a^{\prime}(x)=a(x) \bmod f(x)$
- Let $\mathcal{C}_{g}=<\left(\mathbf{A}_{i, j}\right)>_{K}$ a cellular code, $\mathcal{C}_{f}=<\left(\mathbf{A}_{i, j}^{\prime}\right)>_{L}$, where

$$
<\left(\mathbf{A}_{i, j}\right)>_{K} \xrightarrow{\Phi_{g}^{-1}}<\left(a_{i, j}(x)\right)>_{\mathcal{R}_{g}} \xrightarrow{\Pi}<\left(a_{i, j}^{\prime}(x)\right)>_{\mathcal{R}_{f}} \xrightarrow{\Phi_{f}}<\left(\mathbf{A}_{i, j}^{\prime}\right)>_{L}
$$

Projected code

Figure: Projected code with $\ell=3$

Proposition

\mathcal{C}_{f} is an f-cellular code over L of length $\ell \delta$ and dimension $\leq s \times \delta$

Example

- Parameters: $K=\mathbb{F}_{2}, g(x)=x^{6}-1$

$$
\mathbf{G}=\left(\begin{array}{llllll}
c_{0} & c_{1} & c_{2} & c_{3} & c_{4} & c_{5} \\
c_{1} & c_{2} & c_{3} & c_{4} & c_{5} & c_{0} \\
c_{2} & c_{3} & c_{4} & c_{5} & c_{0} & c_{1} \\
c_{3} & c_{4} & c_{5} & c_{0} & c_{1} & c_{2} \\
c_{4} & c_{5} & c_{0} & c_{1} & c_{2} & c_{3} \\
c_{5} & c_{6} & c_{1} & c_{2} & c_{3} & c_{4}
\end{array}\right) \begin{array}{r}
c(x) \\
x c(x) \\
x^{2} c(x) \\
x^{3} c(x) \\
x^{4} c(x) \\
x^{5} c(x)
\end{array}
$$

- $g(x)=\left(x^{3}-1\right)\left(x^{3}+1\right)=\left(x^{2}-1\right)\left(x^{4}+x^{2}+1\right)$.

Example

(1) $f(x)=x^{3}-1$, then let

$$
\begin{gathered}
a_{0}=c_{0}+c_{3}, a_{1}=c_{1}+c_{4}, a_{3}=c_{2}+c_{5} \\
\mathcal{C}_{f}=<\left(\begin{array}{rrr}
a_{0} & a_{1} & a_{2} \\
a_{1} & a_{0} & a_{2} \\
a_{2} & a_{1} & a_{0}
\end{array}\right)>
\end{gathered}
$$

(2) $f(x)=x^{2}-1$, and $b_{0}=c_{0}+c_{2}+c_{4}, b_{1}=c_{1}+c_{3}+c_{5}$

$$
\mathcal{C}_{f}=<\left(\begin{array}{ll}
b_{0} & b_{1} \\
b_{1} & b_{0}
\end{array}\right)>
$$

Quasi-cyclic particuliarity

- If $g(x)=x^{m}-1$, then $\mathbf{b}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right) \in K^{m \ell}$ is in $\mathcal{C} \stackrel{\perp}{g}$, iff

$$
\begin{gathered}
\forall i=1, \ldots, s \sum_{k=1}^{\ell} a_{i, k}(x) b_{k}(x)=0 \\
\Rightarrow \quad \mathcal{C}_{g}^{\perp}=<\left(\mathbf{B}_{i, j}\right)_{i=1, j=1}^{\ell-s, \ell}>_{K}
\end{gathered}
$$

Proposition

Let $g(x)=x^{m=u v}-1$, and $f(x)=x^{u}-1$ then

$$
\left(\mathcal{C}_{f}\right)^{\perp}=\left(\mathcal{C}^{\perp}\right)_{f}=<\left(\mathbf{B}_{i, j}^{\prime}\right)_{i=1, j=1}^{\ell-s, \ell}>_{K}
$$

General principle of decoding

- Input: $\mathbf{y}=\mathbf{c}+\mathbf{e}, \mathbf{c} \in \mathcal{C}_{g}$
- Procedure:
(1) $\stackrel{\psi_{g}^{-1}(y)}{\Rightarrow}\left(y_{1}(x), \ldots, y_{\ell}(x)\right)=\left(c_{1}(x)+e_{1}(x), \ldots, c_{\ell}(x)+e_{\ell}(x)\right)$
(2) Let $f(x) \in L[x]$ dividing $g(x)$:

$$
\mathbf{y}^{\prime}(x)=\left(y_{1}^{\prime}(x), \ldots, y_{\ell}^{\prime}(x)\right)=\left(c_{1}^{\prime}(x)+e_{1}^{\prime}(x), \ldots, c_{\ell}^{\prime}(x)+e_{\ell}^{\prime}(x)\right)
$$

(3) $\stackrel{\psi_{\boldsymbol{f}}\left(\mathbf{y}^{\prime}(x)\right)}{\Rightarrow} \mathbf{y}^{\prime}=\mathbf{c}^{\prime}+\mathbf{e}^{\prime}, \mathbf{c} \in \mathcal{C}_{f}$
(4) Decode in \mathcal{C}_{f}

- Improves the decoding of \mathcal{C}_{g} ??

Hamming metric case

Projection in Hamming metric

Proposition

Let $\mathbf{e}=\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{\ell}\right) \in K^{m \ell}$ of weight t. If
$e_{i}(x)=e_{i}^{(1)}(x)+x^{\operatorname{deg}(f)} e_{i}^{(2)}(x)$ and $u_{i}^{(2)}=w t\left(e_{i}^{(2)}(x)\right)$ then:

$$
w t\left(\mathbf{e}^{\prime}\right) \leq t+\sum_{i=1}^{\ell}(w t(f)-2) u_{i}^{(2)} \leq t(w t(f)-1)
$$

- Consequence :
- If $f(x)=x^{\delta}+a, a \in L \hookleftarrow K$ then $w t\left(\mathbf{e}^{\prime}\right) \leq t$

Example

Decoding via projection - (I)

- Let $n^{\prime}=\operatorname{deg}(f) \ell$
- Let $k^{\prime}=\operatorname{deg}(f) s$
- Choice of \mathcal{C}_{f} : choose $f(x) \mid g(x)$ such that

$$
t^{\prime}=t(w t(f)-1) \leq d_{G V}=n^{\prime} H^{-1}\left(1-k^{\prime} / n^{\prime}\right)
$$

$\Rightarrow \mathbf{e}^{\prime}$ uniquely decoded with complexity $k^{\prime 2} n^{\prime} \frac{\binom{n^{\prime}}{k^{\prime}}}{\binom{n^{\prime}}{k^{\prime}}}$

- Use this information to finish the decoding...

Decoding via projection - (II)

- Conditions on the parameters: since $k^{\prime} / n^{\prime}=k / n$

$$
\frac{t(w t(f)-1)}{\operatorname{deg}(f)} \leq \ell H^{-1}(1-k / n)
$$

- Complexity: $k^{\prime 2} n^{\prime} \frac{\binom{n^{\prime}}{k^{\prime}}}{\binom{n^{\prime}}{k^{\prime}}}$
- Finishing the decoding:
(1) Puncture \mathcal{C}_{g} on $m t^{\prime}$ positions $\Rightarrow \widetilde{\mathcal{C}_{g}},\left[\tilde{n}=n-m t^{\prime}, k\right]$
(2) Decode weight $\max \left(t-t^{\prime}, 0\right)$ errors in $\widetilde{\mathcal{C}_{g}}$ with complexity

$$
\approx k^{2}\left(n-m t^{\prime}\right) \frac{\binom{n-m t^{\prime}}{k}}{\binom{n-\max \left(t-t^{\prime}, 0\right)}{k}}
$$

Case of divisible quasi-cyclic codes

- Let $g(x)=x^{m=u v}-1$, then $f(x)=\left(x^{v}-1\right) \mid g(x)$:
- \mathcal{C}_{f} quasi-cyclic
- $w t\left(\mathbf{e}^{\prime}\right) \leq w t(\mathbf{e})$
- Complexity gain $\approx(k / u)^{3} / \sqrt{v}$, provided GV satisfied

Application to MDPC cryptosystem

- Original parameters : $g(x)=x^{4800}-1, t=84, \ell=2$

$$
\underbrace{(I \mid a)}_{9600}
$$

- $d_{G V}=0.11 \times 9600=1050 \gg t$
- Choice of $f(x): x^{400}-1$,
- $d_{g v}=88$ for unique decoding in \mathcal{C}_{f}
- Recovering \mathbf{e}^{\prime} of weight 84 : gain of $12^{3} / 4 \approx 2^{8}$
- $\widetilde{\mathcal{C}_{f}}$ of dimension 4800 and length $9600-84 * 12=9596$

Rank metric case

Action on the metric

Proposition

Let $\mathbf{e} \in K^{m \ell}$ of rank t. Then if $f(x) \in L[x]$ and if $[L: K]=u$ $R k\left(\mathrm{e}^{\prime}\right) \leq u \times R k(\mathrm{e})$

- Importance of the smallest field in which $g(x)$ non-prime

Decoding in rank metric

- Let $n^{\prime}=\operatorname{deg}(f) \ell$
- Let $k^{\prime}=\operatorname{deg}(f) s$
- Choose $f(x) \in L[x] \mid g(x)$ such that

$$
t^{\prime}=u t \leq d_{G V}=\left(n^{\prime}+u m\right) / 2-\sqrt{\left(u m-n^{\prime}\right)^{2} / 4+u m k^{\prime}}
$$

$\Rightarrow \mathbf{e}^{\prime}$ uniquely decoded

- Usually sufficient to recover \mathbf{e}

Application to LRPC Cryptosystem

- Original parameters : $g(x)=x^{47}-1$, code over $\mathbb{F}_{2^{47}}, t=4$
- $g(x)=(x-1) f(x) f^{*}(x)$ in $\mathbb{F}_{2}[X] \Rightarrow u=1$
- $\mathcal{C}_{f}\left[n^{\prime}=46, k^{\prime}=23\right]$ over $\mathbb{F}_{2^{47}}$
- $d_{G V}=13$
- Complexity comparisons

	$\log _{2}\left(C_{1}\right)$	$\log _{2}\left(C_{2}\right)$	$\log _{2}\left(C_{3}\right)$	$\log _{2}\left(C_{4}\right)$
\mathcal{C}_{g}	129	218	216	187
\mathcal{C}_{f}	126	120	117	184

Perspectives

- Cancellation of errors by projection \Rightarrow improvement of complexity
- Factorizable QC-codes: Improvement in the search for small weight codewords
- Decoding via trellis of projection
- For cryptography: Take into account factorization of polynomials $x^{m}-1$

